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Abstract In most of studies on multiobjective noncooperative games, games are repre-
sented in normal form and a solution concept of Pareto equilibrium solutions which is an
extension of Nash equilibrium solutions has been focused on. However, for analyzing eco-
nomic situations and modeling real world applications, we often see cases where the extensive
form representation of games is more appropriate than the normal form representation. In
this paper, in a multiobjective two-person nonzero-sum game in extensive form, we employ
the sequence form of strategy representation to define a nondominated equilibrium solution
which is an extension of a Pareto equilibrium solution, and provide a necessary and sufficient
condition that a pair of realization plans, which are strategies of players in sequence form,
is a nondominated equilibrium solution. Using the necessary and sufficient condition, we
formulate a mathematical programming problem yielding nondominated equilibrium solu-
tions. Finally, giving a numerical example, we demonstrate that nondominated equilibrium
solutions can be obtained by solving the formulated mathematical programming problem.

Keywords Nondominated equilibrium solution · Multiobjective two-person nonzero-sum
game in extensive form · Mathematical programming problem

1. Introduction

A solution concept of Pareto equilibrium solutions which is an extension of Nash equilibrium
solutions has been playing a central role in development of theories and methodologies on
multiobjective noncooperative games (Shapley 1959; Zeleny 1975; Corley 1985; Borm et al.
1988, 2003; Wierzbicki 1990; Charnes et al. 1990; Zhao 1991; Wang 1993; Nishizaki and
Sakawa 1995, 2000; Voorneveld et al. 1999, 2000). In multiobjective optimization, the con-
cept of Pareto optimal solutions is extended to nondominated solutions by using domination
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cones (Yu 1974, Tamura and Miura 1979). Applying this extension, Nishizaki and Notsu
(2007) consider nondominated equilibrium solutions in multiobjective two-person nonzero-
sum game in normal form. Most of studies on multiobjective noncooperative games have
employed mainly the normal form representation, and examine existence of the solutions
and computational methods for obtaining them. However, for analyzing economic situations
and modeling real world applications, there are a large number of examples in which the
extensive form representation of games is more appropriate than the normal form represen-
tation. Namely, through game representation of extensive form in which series of moves and
choices of players are described by a tree model, many economic situations with multiple
moves of players are directly and appropriately modeled.

By transforming a game in extensive form into a game in normal form, Nash equilibrium
solutions can be computed, but unfortunately the number of pure strategies increases expo-
nentially with a size of game. Although alternatively an expected payoff can be expressed as
a function of behavior strategies, it becomes a high-degree nonlinear function when the num-
ber of levels of the game tree is large. Then it becomes difficult to compute Nash equilibrium
solutions. Von Stengel (1996) and Koller et al. (1996) define a sequence which is a path from
the root of a game tree to a node, and formulate an expected payoff by giving a probability
distribution to a set of sequences which is called a realization plan. In this formulation, the
expected payoff is linear even if the game tree becomes large and multistage, and the number
of sequences increases linearly with a size of game.

Extension of games in extensive form under a multiobjective environment is made by
Krieger (2003), and existence of Pareto equilibrium solutions is considered. In this paper,
employing the sequence form, we deal with a multiobjective two-person nonzero-sum game
in extensive form, and define a nondominated equilibrium solution based on domination
cones. After giving a necessary and sufficient condition for a pair of realization plans to be
a nondominated equilibrium solution, we formulate a mathematical programming problem
yielding nondominated equilibrium solutions by using the necessary and sufficient condi-
tion. Finally, a numerical example is given to demonstrate that nondominated equilibrium
solutions can be obtained by solving the formulated mathematical programming problem.

2. Nondominated equilibrium solutions of a multiobjective two-person
nonzero-sum game in extensive form

2.1 A multiobjective two-person nonzero-sum game and sequences in the extensive game

A game in extensive form is characterized by a game tree, players, information sets, chance
moves, and payoff functions. A game tree is represented by a graph with nodes including the
root which is an initial node and directed edges. Especially, a terminal node is called a leaf,
and at each of leaves a vector of payoffs is assigned to each player in multiobjective games.
An example of a multiobjective two-person nonzero-sum game in extensive form is given in
Fig. 1, where ni , i = 1, . . . , 31 denote nodes; mi , li , i = 1, . . . , 6 denote choices of player
1; ci , di , i = 1, 2 denote choices of player 2; and pi , i = 1, 2 denote probabilities of the
chance move.

There are two representations of strategies in an extensive form game: behavior strategies
and mixed strategies in the corresponding normal form game. An expected payoff as a func-
tion of behavior strategies becomes a high-degree nonlinear function when the number of
levels of the game tree is large. When an extensive form game is transformed into a normal
form game, the number of pure strategies increases exponentially with a size of game. On the
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Fig. 1 A game tree of a multiobjective two-person nonzero-sum game

assumption of perfect recall of players, von Stengel (1996) and Koller et al. (1996) propose
a game representation of the sequence form which does not cause the mentioned above dif-
ficulties. Namely, the expected payoff as a function of realization plans is linear even if the
game tree becomes multistage, and the number of sequences increases linearly with a size
of game. Because the exponential increase of the number of pure strategies in the normal
form game results from extreme increase of the number of pure strategies such that players’
choices are not consistent with behaviors of perfect recall, it can be interpreted that a set of
pure strategies in sequence form corresponds to that of normal form excluding not perfect
recall pure strategies.

A series of nodes and edges from the root to some node is called a path, and a sequence is
defined by a set of labels of edges on the path to the node. For example, for node n12 of the
game tree depicted in Fig. 1, a sequence of player 1 is m2, that of player 2 is c1, and that of
chance player is p2. For node n25 which is a leaf, a sequence of player 1 is m2l5, and those
of player 2 and chance player are the same as the sequences for node n12.

Let L be a set of leaves. Payoff functions in extensive form are defined on the set L , and
a vector of payoffs is assigned to each of the players at any leaf l ∈ L; let H1 : L → R

r1 be
the payoff function of player 1, and let H2 : L → R

r2 be that of player 2, where r1 and r2

are the numbers of payoffs (objectives) of players 1 and 2, respectively. In contrast, payoff
functions in sequence form are defined on a set of sequences. Let S0, S1, and S2 be the sets
of sequences of chance player, player 1, and player 2, respectively, and let |S0|, |S1|, and
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|S2| be the numbers of sequences of chance player, player 1, and player 2, respectively. Let
S = S0 × S1 × S2 be the space of sequences of all the players.

A payoff function of player 1 in sequence form is defined as G1 : S → R
r1 , and if a

sequence s = (s0, s1, s2) ∈ S is specified at a leaf l ∈ L , the payoff function is G1(s) = H1(l)
and otherwise it is G1(s) = 0. A payoff function of player 2 G2 : S → R

r2 is also defined
similarly. For example, for node n12 of the game tree depicted in Fig. 1, a sequence vector is
s12 = (p2, m2, c1), and payoffs of players 1 and 2 are G1(s12) = (0, 0), G2(s12) = (0, 0),
respectively. For node n25 which is a leaf, a sequence vector is s25 = (p2, m2l5, c1), and
payoffs of players 1 and 2 are G1(s25) = (−1,−2), G2(s25) = (1, 1), respectively.

A set of all nodes in a game tree is divided into information sets. Let U1 and U2 be the sets
of information sets of players 1 and 2, respectively, and let |U1| and |U2| be the numbers of
the information sets of players 1 and 2, respectively. Each information set u exactly belongs
to one player i . All nodes in an information set u have the same choices, and the set of choices
at u is denoted by Cu . Let |Cu | be the number of choices at u.

Because it is assumed that perfect recall holds for all the players in a sequence form game,
all nodes in an information set u have the same sequence. Let the sequence be denoted by
σu , and it leads the information set u. A choice c ∈ Cu in u extends the sequence σu , and the
extended sequence is expressed by σuc, i.e.,

σuc = σu ∪ {c}, c ∈ Cu . (1)

With this notation, a set of sequences of player i can be represented by Si = {∅} ∪ {σuc |
u ∈ Ui , c ∈ Cu}.

In sequence form, a strategy is represented by giving a probability distribution to a set
of sequences, and it is called a realization plan. A realization plan x ∈ R

|S1| of player 1 is
subject to the following constraints.

x(∅) = 1 (2a)

− x(σu1) +
∑

c1∈Cu1

x(σu1 c1) = 0, u1 ∈ U1 (2b)

x(s1) � 0, s1 ∈ S1. (2c)

Player 2’s realization plan y ∈ R
|S2| is also subject to the following constraints.

y(∅) = 1 (3a)

− y(σu2) +
∑

c2∈Cu2

y(σu2 c2) = 0, u2 ∈ U2 (3b)

y(s2) � 0, s2 ∈ S2. (3c)

By using the (1 + |U1|) × |S1| constraint matrix E1 and the (1 + |U2|) × |S2| constraint
matrix E2, the above constraints (2) and (3) can be simply expressed by

E1x = e1 (4)

E2y = e2, (5)

respectively, where e1 and e2 are the (1 + |U1|)- and (1 + |U2|)-dimensional vectors such
that the first element is 1 and the other elements are all 0, i.e., (1, 0, . . . , 0)T . The superscript
T means the transposition of a vector or a matrix. Then, the sets X and Y of realization plans
of players 1 and 2 are defined by
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X =
{

x ∈ R
|S1| | E1x = e1, x � 0

}
(6)

Y =
{

y ∈ R
|S2| | E2y = e2, y � 0

}
, (7)

respectively.
Let p = (p1, . . . , p|S0|) be a realization plan of chance player. When players 1 and 2

choose sequences s1 and s2, respectively, the expected payoffs of them are

as1s2 = (a1
s1s2

, . . . , ar1
s1s2

) =
∑

s0∈S0

G1(s0, s1, s2)p(s0) ∈ R
r1 (8)

bs1s2 = (b1
s1s2

, . . . , br2
s1s2

) =
∑

s0∈S0

G2(s0, s1, s2)p(s0) ∈ R
r2 . (9)

Now, let A and B denote |S1| × |S2| matrices such that elements of the s1th row and s2th
column are the above defined vectors as1s2 and bs1s2 , respectively. Then, for given realization
plans x ∈ X and y ∈ Y of players 1 and 2, the vectors of expected payoffs of them are
represented by

xT Ay �

⎛

⎝
|S1|∑

s1=1

|S2|∑

s2=1

xs1 a1
s1s2

ys2 , . . . ,

|S1|∑

s1=1

|S2|∑

s2=1

xs1 ar1
s1s2

ys2

⎞

⎠ (10)

xT By �

⎛

⎝
|S1|∑

s1=1

|S2|∑

s2=1

xs1 b1
s1s2

ys2 , . . . ,

|S1|∑

s1=1

|S2|∑

s2=1

xs1 br2
s1s2

ys2

⎞

⎠ , (11)

respectively.

2.2 Nondominated solutions to a multiobjective mathematical programming problem

Before examining nondominated equilibrium solutions in multiobjective two-person
nonzero-sum games in extensive form, we first review solutions concepts and related matters
in multiobjective mathematical programming. For convenience, let us introduce the follow-
ing notation: for any two vectors z, z′ ∈ R

N , z = z′ ⇔ zi = zi
′, i = 1, . . . , N ; z � z′ ⇔

zi � zi
′, i = 1, . . . , N ; z < z′ ⇔ zi < zi

′, i = 1, . . . , N ; z ≤ z′ ⇔ z � z′ and z �= z′.
Let z be an N -dimension real decision variable. Consider a multiobjective mathemati-

cal programming problem minimizing K objective functions f(z) = ( f1(z), . . . , fK (z))T

subject to M1 inequality constraints g(z) = (g1(z), . . . , gM1(z))
T � 0 and M2 equality

constraints h(z) = (h1(z), . . . , hM2(z))
T = 0, where 0 is an appropriate dimensional zero

vector (0, . . . , 0)T corresponding to a dimension of the left hand side. Then, a multiobjective
mathematical programming problem can be written as:

minimize f(z) (12a)

subject to z ∈ Z � {z ∈ R
N | g(z) � 0, h(z) = 0}. (12b)

Let O = {f(z) ∈ R
K | z ∈ Z} be a feasible area of the multiple objective values in an

objective space.
There does not generally exist a solution minimizing all the objectives simultaneously.

Then, Pareto optimal solutions such that any improvement of one objective can be achieved
only at the expense of another are introduced, and they are defined as follows.
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Definition 1 z∗ ∈ Z is said to be a Pareto optimal solution if there does not exist another
z ∈ Z such that

f(z) ≤ f(z∗). (13)

As a slightly weaker solution concept than Pareto optimality, weak Pareto optimal solu-
tions are also defined by replacing ≤ with < in (13).

Next, we provide a definition of a nondominated solution proposed by Yu (1974) which
is a solution concept generalized from a Pareto optimal solution. To begin with, we give
definitions of a cone and related concepts. A set � is said to be a cone if, for any vector
u ∈ � and a nonnegative scalar η � 0, ηu ∈ � holds. � is a convex cone if, for any two
vectors u1, u2 ∈ � and two nonnegative scalars η1, η2 � 0, η1u1 +η2u2 ∈ � holds. A polar
cone of � is given as

�∗ = {γ ∈ R
K | γ T u � 0, ∀u ∈ �}. (14)

We define a domination cone prescribing a preference relation. For o, o′ ∈ O ⊂ R
K ,

when o is preferred to o′, it is denoted by o � o′. Then, a domination cone is defined as
follows.

Definition 2 Given o ∈ O ⊂ R
K , a nonzero vector d ∈ R

K is a domination factor for o
if o � o + ρd for all ρ > 0. Then, a domination cone D(o) of o is a set of all domination
factors for o.

Throughout this paper, we use only a constant domination cone � � D(o) for all o ∈ O ,
and simply call � a domination cone. Furthermore, we restrict a domination cone to a poly-
hedral cone with nonempty interior which can be represented in the following by using its
generator V̂ = {v̂t | t = 1, . . . , p}:

� =
{

π ∈ R
K
∣∣∣∣ π =

p∑

t=1

τt v̂t , τt � 0, t = 1, . . . , p

}
. (15)

Then, a multiobjective mathematical programming problem can be defined by the three
tuple (Z , f(z),�), where Z = {z ∈ R

N | g(z) � 0, h(z) = 0} is a feasible region, f(z)
is a vector of the multiple objectives, and � ⊂ R

K is a domination cone. A nondominated
solution to a multiobjective mathematical programming problem (Z , f(z),�) is defined as
follows.

Definition 3 Given a multiobjective mathematical programming problem (Z , f(z), �), z∗ ∈
Z is said to be a nondominated solution if there does not exist another z ∈ Z such that

f(z∗) ∈ f(z) + � and f(z) �= f(z∗). (16)

If a domination cone � is the negative quadrant, any nondominated solution is also a
Pareto optimal solution.

A condition for being a nondominated solution is given by Yu (1974) and Tamura and
Miura (1979). Because we restrict a domination cone to a polyhedral cone and the Tamura
and Miura condition is a more natural extension of the Kuhn and Tucker condition (Kuhn
and Tucker 1951) of optimality for a multiobjective mathematical programming problem, we
employ the Tamura and Miura condition to develop a condition for being a nondominated
equilibrium solution.
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A polar cone �∗ for a domination cone can be represented in the following by using its
generator V = {vt | t = 1, . . . , q}:

�∗ =
{

ω ∈ R
K
∣∣∣∣ ω =

q∑

t=1

ζt vt , ζt � 0, t = 1, . . . , q

}
. (17)

Let

F(z) = [∇f(z)T v1, . . . ,∇f(z)T vq ], (18)

where, for t ∈ {1, . . . , q},

∇f(z)T vt =

⎡

⎢⎢⎣

∂ f1(z)
∂z1

· · · ∂ fK (z)
∂z1

...
. . .

...
∂ f1(z)
∂zN

· · · ∂ fK (z)
∂zN

⎤

⎥⎥⎦

⎡

⎢⎣
vt

1
...

vt
K

⎤

⎥⎦ . (19)

For a multiobjective mathematical programming problem (Z , f(z),�), assume that g(z)
and h(z) satisfy the Slater constraint qualification, vt T f(z), t = 1, . . . , q are concave, and Z
is a convex set. Then, the following necessary and sufficient condition is given by Tamura
and Miura (1979). z ∈ Z is a nondominated solution if and only if there exist vectors µ ≥ 0,
λ � 0 and ψ such that

F(z)µ− ∇g(z)T λ− ∇h(z)Tψ = 0 (20a)

g(z)T λ = 0 (20b)

g(z) � 0 (20c)

h(z) = 0. (20d)

If the generator of the polar cone of the domination cone is specified by V 0 = {v1 =
(1, 0, . . . , 0)T , v2 = (0, 1, 0, . . . , 0)T , . . . , vK = (0, . . . , 0, 1)T }, the Tamura and Miura
condition becomes

∇f(z)Tµ− ∇g(z)T λ− ∇h(z)Tψ = 0 (21a)

g(z)T λ = 0 (21b)

g(z) � 0 (21c)

h(z) = 0, (21d)

and the above condition corresponds to the Kuhn and Tucker condition (Kuhn and Tucker
1951) for Pareto optimality to a multiobjective mathematical programming problem.

2.3 Nondominated equilibrium solutions of a multiobjective two-person nonzero-sum
game in extensive form

First, in a multiobjective two-person nonzero-sum game in extensive form, we give a solu-
tion concept of Pareto equilibrium solutions, and then extend it to that of nondominated
equilibrium solutions by using domination cones.

Definition 4 In a multiobjective two-person nonzero-sum game in extensive form, a pair of
realization plans (x∗, y∗) ∈ X × Y is said to be a Pareto equilibrium solution if there does
not exist another (x, y) ∈ X × Y such that
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x∗T Ay∗ ≤ xT Ay∗ (22a)

x∗T By∗ ≤ x∗T By. (22b)

A multiobjective two-person nonzero-sum game in extensive form can be reduced to
a single-objective two-person nonzero-sum game by using a weighting coefficient vector
(w, v) ∈ R

r1++ × R
r2++, where R

ri++ = {z ∈ R
ri | z > 0}, i = 1, 2. Furthermore, because the

single-objective game in extensive form can be transformed into a game in normal form and
there exists at least one equilibrium solution in the game in normal form, in general there
exists at least one Pareto equilibrium solution in a multiobjective two-person nonzero-sum
game in extensive form (Krieger 2003).

For simplicity, let f1(x; y) � xT Ay and f2(y; x) � xT By, and we define nondominated
equilibrium solutions in the following.

Definition 5 Let �1 and �2 denote domination cones of players 1 and 2, respectively. Then,
in a multiobjective two-person nonzero-sum game in extensive form, a pair of realization
plans (x∗, y∗) ∈ X × Y is said to be a nondominated equilibrium solution if there does not
exist another (x, y) ∈ X × Y such that

f1(x∗; y∗) ∈ f1(x; y∗) + �1, (23a)

f2(y∗; x∗) ∈ f2(y; x∗) + �2. (23b)

Especially, by letting �1 = R
r1− and �2 = R

r2− where R
ri− = {z ∈ R

ri | z � 0}, i = 1, 2,
any nondominated equilibrium solution with respect to the domination cones R

r1− and R
r2− is

also a Pareto equilibrium solution.
The above definition means that x∗ is a nondominated response of player 1 for a strategy

y∗ of player 2, and y∗ is a nondominated response of player 2 for a strategy x∗ of player 1.
This can be explicitly expressed as follows. The sets of nondominated responses of players
1 and 2 are defined as

N 1(y,�1) = {x ∈ X | there does not exist x′ ∈ X such that f1(x; y) ∈ f1(x′; y) + �1},
(24a)

N 2(x,�2) = {y ∈ Y | there does not exist y′ ∈ Y such that f2(y; x) ∈ f2(y′; x) + �2}.
(24b)

Then, by using the concept of nondominated responses, the set N (�1,�2) of nondominated
equilibrium solutions can be represented by

N (�1,�2) = {(x∗, y∗) | x∗ ∈ N 1(y∗,�1), y∗ ∈ N 2(x∗,�2)}. (25)

A relation between the domination cones and the sets of nondominated equilibrium solu-
tions is shown in the following proposition.

Proposition 1 Let �1 and �1′
denote domination cones of player 1, and �2 and �2′

denote
domination cones of player 2 in a multiobjective two-person nonzero-sum game in extensive
form. Then, if �1 ⊂ �1′

and �2 ⊂ �2′
, N (�1′

,�2′
) ⊂ N (�1,�2).

Proof If �1 ⊂ �1′
and �2 ⊂ �2′

, from (24a) and (24b), we have

N 1(y,�1′
) ⊂ N 1(y,�1),

N 2(x,�2′
) ⊂ N 2(x,�2),
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and from (25), we have

N (�1′
,�2′

) ⊂ N (�1,�2).

��
From the fact that there exists at least one Pareto equilibrium solution (Krieger 2003), we

obtain the following theorem showing the existence of nondominated equilibrium solutions.

Theorem 1 In a multiobjective two-person nonzero-sum game in extensive form, for any
domination cones of players 1 and 2, there exists at least one nondominated equilibrium
solution.

Proof Let �1 and �2 denote domination cones of players 1 and 2, respectively. From Defi-
nition 3, a pair of realization plans (x∗, y∗) ∈ X × Y is a nondominated equilibrium solution
if there does not exist another (x, y) ∈ X × Y such that

x∗T Ay∗ − xT Ay∗ ∈ �1,

x∗T By∗ − x∗T By ∈ �2.

Let V 1 = {vt1 | t1 = 1, . . . , q1} and W 2 = {wt2 | t2 = 1, . . . , q2} denote generators of
polar cones �1∗ and �2∗ of the domination cones �1 and �2 of players 1 and 2, respectively.
Then, we have

vt1 T
(x∗T Ay∗ − xT Ay∗) � 0, t1 = 1, . . . , q1,

wt2 T
(x∗T By∗ − x∗T By) � 0, t2 = 1, . . . , q2,

and they can be rewritten as

x∗T
(vt1 T A)y∗ − xT (vt1 T A)y∗ � 0, t1 = 1, . . . , q1,

x∗T
(wt2 T B)y∗ − x∗T

(wt2 T B)y � 0, t2 = 1, . . . , q2.

Let A′ � (A′
1, . . . , A′

q1
)T , A′

t1 = vt1 T A, t1 = 1, . . . , q1 and B′ � (B ′
1, . . . , B ′

q2
)T , B ′

t2 =
wt2 T B, t2 = 1, . . . , q2. Then, if there does not exist another (x, y) ∈ X × Y such that

x∗T A′y∗ ≤ xT A′y∗,

x∗T B′y∗ ≤ x∗T B′y,

a pair of realization plans (x∗, y∗) is a nondominated equilibrium solution and at the same
time it is a Pareto equilibrium solution of the multiobjective two-person nonzero-sum game
in extensive form. Therefore, because there exists at least one Pareto equilibrium solution,
there also exists at least one nondominated equilibrium solution. ��
2.4 Necessary and sufficient condition for a nondominated equilibrium solution

In a multiobjective two-person nonzero-sum game in extensive form, given domination cones
�1 and �2 of players 1 and 2, respectively, the fact that a realization plan x∗ of player 1
is a nondominated response for a realization plan y∗ of player 2 corresponds to the fact
that x∗ is a nondominated solution to a multiobjective mathematical programming problem
(X, f1(x; y∗),�1), and similarly the fact that a realization plan y∗ of player 2 is a nondomi-
nated response for a realization plan x∗ of player 1 corresponds to the fact that y∗ is a nondom-
inated solution to a multiobjective mathematical programming problem (Y, f2(y; x∗),�2).
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Assume that X , Y , f1(x; y∗) = xT Ay∗, and f2(y; x∗) = x∗T By are represented by (6),
(7), (10), and (11), respectively, and �1 and �2 are polyhedral domination cones such as
(15). Then, the following theorem can be obtained by using the Tamura and Miura condition
(20) to the two multiobjective mathematical programming problems (X, f1(x; y∗),�1) and
(Y, f2(y; x∗),�2).

Theorem 2 In a multiobjective two-person nonzero-sum game in extensive form, let V 1 =
{vt1 | t1 = 1, . . . , q1} and W 2 = {wt2 | t2 = 1, . . . , q2} denote generators of polar cones
�1∗ and �2∗ of the domination cones �1 and �2 of players 1 and 2, respectively, where �1∗
and �2∗ are represented as

�1∗ =
⎧
⎨

⎩ω
1 ∈ R

r1

∣∣∣∣ ω
1 =

q1∑

t1=1

δt1 vt1 , δt1 � 0, t1 = 1, . . . , q1

⎫
⎬

⎭ , (26a)

�2∗ =
⎧
⎨

⎩ω
2 ∈ R

r2

∣∣∣∣ ω
2 =

q2∑

t2=1

εt2 wt2 , εt2 � 0, t2 = 1, . . . , q2

⎫
⎬

⎭ . (26b)

Then, (x∗, y∗) is a nondominated equilibrium solution if and only if there exist α∗, β∗, δ∗,
and ε∗ satisfying the following condition, which are |U1|-, |U2|-, q1-, and q2-dimensional
vectors, respectively.

q1∑

t1=1

r1∑

k1=1

|S1|∑

s1=1

|S2|∑

s2=1

δ∗
t1v

t1
k1

x∗
s1

ak1
s1s2

y∗
s2

−
|S1|∑

s1=1

|U1|∑

u1=0

α∗
u1

e1
u1s1

x∗
s1

= 0 (27a)

q2∑

t2=1

r2∑

k2=1

|S1|∑

s1=1

|S2|∑

s2=1

ε∗
t2w

t2
k2

x∗
s1

bk2
s1s2

y∗
s2

−
|S2|∑

s2=1

|U2|∑

u2=0

β∗
u2

e2
u2s2

y∗
s2

= 0 (27b)

q1∑

t1=1

r1∑

k1=1

|S2|∑

s2=1

δ∗
t1v

t1
k1

ak1
s1s2

y∗
s2

−
|U1|∑

u1=0

α∗
u1

e1
u1s1

� 0, s1 = 1, . . . , |S1| (27c)

q2∑

t2=1

r2∑

k2=1

|S1|∑

s1=1

ε∗
t2w

t2
k2

x∗
s1

bk2
s1s2

−
|U2|∑

u2=0

β∗
u2

e2
u2s2

� 0, s2 = 1, . . . , |S2| (27d)

|S1|∑

s1=1

e1
u1s1

x∗
s1

− e1
u1

= 0, u1 = 0, . . . , |U1| (27e)

|S2|∑

s2=1

e2
u2s2

y∗
s2

− e2
u2

= 0, u2 = 0, . . . , |U2| (27f)

x∗ � 0 (27g)

y∗ � 0 (27h)

δ∗ ≥ 0 (27i)

ε∗ ≥ 0 (27j)
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Proof Let the expected payoffs and the inequality and equality constraints of player 1 be
expressed as

f1(x; y∗) = xT Ay∗ =
⎛

⎝
|S1|∑

s1=1

|S2|∑

s2=1

xs1 a1
s1s2

y∗
s2

, . . . ,

|S1|∑

s1=1

|S2|∑

s2=1

xs1 ar1
s1s2

y∗
s2

⎞

⎠

h1
u1

(x) =
|S1|∑

s1=1

e1
u1s1

xs1 − e1
u1

= 0, u1 = 0, . . . , |U1|

g1
s1

(x) = −xs1 � 0, s1 = 1, . . . , |S1|,
and X = {x ∈ R

m | g1(x) � 0, h1(x) = 0}. Similarly, let the expected payoffs and the
inequality and equality constraints of player 2 be expressed as

f2(y) = x∗T By =
⎛

⎝
|S1|∑

s1=1

|S2|∑

s2=1

x∗
s1

b1
s1s2

ys2 , . . . ,

|S1|∑

s1=1

|S2|∑

s2=1

x∗
s1

br2
s1s2

ys2

⎞

⎠

h2
u2

(y) =
|S2|∑

s2=1

e2
u2s2

ys2 − e2
u2

= 0, u2 = 0, . . . , |U2|

g2
s2

(y) = −ys2 � 0, s2 = 1, . . . , |S2|,
and Y = {y ∈ R

n | g2(y) � 0, h2(y) = 0}. Because the generators of polar cones �1∗ and
�2∗ of the domination cones �1 and �2 of players 1 and 2 are V 1 = {vt1 | t1 = 1, . . . , q1}
and V 2 = {wt2 | t2 = 1, . . . , q2}, respectively, let

F1(x) =
[
∇f1(x; y∗)T v1, . . . ,∇f1(x; y∗)T vq1

]
,

F2(y) =
[
∇f2(y; x∗)T w1, . . . ,∇f2(y; x∗)T wq2

]
.

Because vt1 T f1(x; y∗), t1 = 1, . . . , q1, and wt2 T f2(y; x∗), t2 = 1, . . . , q2 are concave,
and X and Y are convex sets, the two multiobjective mathematical programming problems
(X, f1(x; y∗),�1) and (Y, f2(y; x∗),�2) satisfy the assumption of the theorem by Tamura
and Miura (1979). Let δ∗, λ∗, and α∗ be multiplier vectors for F(z), ∇g(z) and ∇h(z) in
(20), respectively, and then from (20a), we have

F1(x∗)δ∗ − ∇g1(x∗)T λ∗ − ∇h1(x∗)α∗ = 0.

It can be rewritten as

λ∗
s1

= −
q1∑

t1=1

r1∑

k1=1

|S2|∑

s2=1

δ∗
t1v

t1
k1

ak1
s1s2

y∗
s2

+
|U1|∑

u1=0

α∗
u1

e1
u1s1

, s1 = 1, . . . , |S1| (28)

From (20b), it follows that

g1(x∗)T λ∗ = 0.

Substitution in (28) yields (27a). Because λ∗ � 0, from (28), one finds (27c). From the
Tamura and Miura condition, we directly obtain (27e), (27g), and (27i).

For player 2, by a similar procedure, we have (27b), (27d), (27f), (27h), and (27j). ��
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If the domination cones of players 1 and 2 are the negative quadrant, any nondominat-
ed equilibrium solution with respect to the domination cones is also a weak Pareto equi-
librium solution and the generators of the polar cones of the domination cone are V 1 =
{v1 = (1, 0, . . . , 0)T , v2 = (0, 1, 0, . . . , 0)T , . . . , vr1 = (0, . . . , 0, 1)T } and W 2 = {w1 =
(1, 0, . . . , 0)T , w2 = (0, 1, 0, . . . , 0)T , . . . , wr2 = (0, . . . , 0, 1)T }. Furthermore, if the mul-
tiplier vectors are strictly positive, i.e., δ > 0, ε > 0, any nondominated equilibrium solution
is also a Pareto equilibrium solution. From the above facts, we straightforwardly obtain the
following corollary.

Corollary 1 For a multiobjective two-person nonzero-sum game in extensive form, (x∗, y∗)
is a Pareto equilibrium solution if and only if there exist α∗, β∗, δ∗, and ε∗ satisfying the
following condition.

r1∑

k1=1

|S1|∑

s1=1

|S2|∑

s2=1

δ∗
k1

x∗
s1

ak1
s1s2

y∗
s2

−
|S1|∑

s1=1

|U1|∑

u1=0

α∗
u1

e1
u1s1

x∗
s1

= 0 (29a)

r2∑

k2=1

|S1|∑

s1=1

|S2|∑

s2=1

ε∗
k2

x∗
s1

bk2
s1s2

y∗
s2

−
|S2|∑

s2=1

|U2|∑

u2=0

β∗
u2

e2
u2s2

y∗
s2

= 0 (29b)

r1∑

k1=1

|S2|∑

s2=1

δ∗
k1

ak1
s1s2

y∗
s2

−
|U1|∑

u1=0

α∗
u1

e1
u1s1

� 0, s1 = 1, . . . , |S1| (29c)

r2∑

k2=1

|S2|∑

s2=1

ε∗
k2

x∗
s1

bk2
s1s2

−
|U2|∑

u2=0

β∗
u2

e2
u2s2

� 0, s2 = 1, . . . , |S2| (29d)

|S1|∑

s1=1

e1
u1s1

x∗
s1

− e1
u1

= 0, u1 = 0, . . . , |U1| (29e)

|S2|∑

s2=1

e2
u2s2

y∗
s2

− e2
u2

= 0, u2 = 0, . . . , |U2| (29f)

x∗ � 0 (29g)

y∗ � 0 (29h)

δ∗ > 0 (29i)

ε∗ > 0 (29j)

2.5 Nondominated equilibrium solutions and corresponding mathematical programming
problem

Using the necessary and sufficient condition for a nondominated equilibrium solution, we
formulate a mathematical programming problem whose optimal solutions are nondominated
equilibrium solutions.

Theorem 3 In a multiobjective two-person nonzero-sum game in extensive form, let V 1 =
{vt1 | t1 = 1, . . . , q1} and W 2 = {wt2 | t2 = 1, . . . , q2} denote generators of polar cones
�1∗ and �2∗ of the domination cones �1 and �2 of players 1 and 2, respectively, where
�1∗ and �2∗ are represented as (26). Then, (x∗, y∗) is a nondominated equilibrium solution
if and only if (x∗, y∗,α∗,β∗, δ∗, ε∗) is an optimal solution to the following mathematical
programming problem.
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maximize
q1∑

t1=1

r1∑

k1=1

|S1|∑

s1=1

|S2|∑

s2=1

δt1v
t1
k1

xs1 ak1
s1s2

ys2 +
q2∑

t2=1

r2∑

k2=1

|S1|∑

s1=1

|S2|∑

s2=1

εt2w
t2
k2

xs1 bk2
s1s2

ys2

−
|U1|∑

u1=0

|S1|∑

s1=1

αu1 e1
u1s1

xs1 −
|U2|∑

u2=0

|S2|∑

s2=1

βu2 e2
u2s2

ys2 (30a)

subject to
q1∑

t1=1

r1∑

k1=1

|S2|∑

s2=1

δt1v
t1
k1

ak1
s1s2

ys2 −
|U1|∑

u1=0

αu1 e1
u1s1

� 0, s1 = 1, . . . , |S1| (30b)

q2∑

t2=1

r2∑

k2=1

|S1|∑

s1=1

εt2w
t2
k2

xs1 bk2
s1s2

−
|U2|∑

u2=0

βu2 e2
u2s2

� 0, s2 = 1, . . . , |S2| (30c)

|S1|∑

s1=1

e1
u1s1

xs1 − e1
u1

= 0, u1 = 0, . . . , |U1| (30d)

|S2|∑

s2=1

e2
u2s2

ys2 − e2
u2

= 0, u2 = 0, . . . , |U2| (30e)

x � 0 (30f)

y � 0 (30g)

δ ≥ 0 (30h)

ε ≥ 0. (30i)

Proof By multiplying the constraint (30b) by xi satisfying the constraints (30d) and (30f)
and multiplying the constraint (30c) by y j satisfying the constraints (30e) and (30g), and
then summing up them, we have

q1∑

t1=1

r1∑

k1=1

|S1|∑

s1=1

|S2|∑

s2=1

δt1v
t1
k1

xs1 ak1
s1s2

ys2 +
q2∑

t2=1

r2∑

k2=1

|S1|∑

s1=1

|S2|∑

s2=1

εt2w
t2
k2

xs1 bk2
s1s2

ys2

−
|U1|∑

u1=0

|S1|∑

s1=1

αu1 e1
u1s1

xs1 −
|U2|∑

u2=0

|S2|∑

s2=1

βu2 e2
u2s2

ys2 � 0 (31)

From (31), a value of the objective function (30a) is not larger than zero even if optimal.
Because there exists a nondominated equilibrium solution from Theorem 1, let (x∗, y∗)

be a nondominated equilibrium solution. From Theorem 2, (x∗, y∗,α∗,β∗, δ∗, ε∗) satisfies
(27a)–(27j), and therefore it also satisfies the constraints (30b)–(30i) of the problem (30).
Moreover, from (27a) and (27b), we have

q1∑

t1=1

r1∑

k1=1

|S1|∑

s1=1

|S2|∑

s2=1

δ∗
t1v

t1
k1

x∗
s1

ak1
s1s2

y∗
s2

+
q2∑

t2=1

r2∑

k2=1

|S1|∑

s1=1

|S2|∑

s2=1

ε∗
t2w

t2
k2

x∗
s1

bk2
s1s2

y∗
s2

−
|U1|∑

u1=0

|S1|∑

s1=1

α∗
u1

e1
u1s1

x∗
s1

−
|U2|∑

u2=0

|S2|∑

s2=1

β∗
u2

e2
u2s2

y∗
s2

= 0

and then from (31), (x∗, y∗,α∗,β∗, δ∗, ε∗) is an optimal solution to the problem (30).
Let (x∗, y∗,α∗,β∗, δ∗, ε∗) be an optimal solution to the problem (30). Because, from

Theorem 1, there exists a nondominated equilibrium solution and it satisfies the condition
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(27a)–(27j) of Theorem 2, there exists at least one feasible solution to the problem (30)
holding the equation

q1∑

t1=1

r1∑

k1=1

|S1|∑

s1=1

|S2|∑

s2=1

δt1v
t1
k1

xs1 ak1
s1s2

ys2 +
q2∑

t2=1

r2∑

k2=1

|S1|∑

s1=1

|S2|∑

s2=1

εt2w
t2
k2

xs1 bk2
s1s2

ys2

−
|U1|∑

u1=0

|S1|∑

s1=1

αu1 e1
u1s1

xs1 −
|U2|∑

u2=0

|S2|∑

s2=1

βu2 e2
u2s2

ys2 = 0.

If (x∗, y∗,α∗,β∗, δ∗, ε∗) is an optimal solution to the problem (30), it must also hold

q1∑

t1=1

r1∑

k1=1

|S1|∑

s1=1

|S2|∑

s2=1

δ∗
t1v

t1
k1

x∗
s1

ak1
s1s2

y∗
s2

+
q2∑

t2=1

r2∑

k2=1

|S1|∑

s1=1

|S2|∑

s2=1

ε∗
t2w

t2
k2

x∗
s1

bk2
s1s2

y∗
s2

−
|U1|∑

u1=0

|S1|∑

s1=1

α∗
u1

e1
u1s1

x∗
s1

−
|U2|∑

u2=0

|S2|∑

s2=1

β∗
u2

e2
u2s2

y∗
s2

= 0. (32)

From (30b), (30c), and (32), we have

q1∑

t1=1

r1∑

k1=1

|S1|∑

s1=1

|S2|∑

s2=1

δ∗
t1v

t1
k1

x∗
s1

ak1
s1s2

y∗
s2

−
|U1|∑

u1=0

|S1|∑

s1=1

α∗
u1

e1
u1s1

x∗
s1

= 0

q2∑

t2=1

r2∑

k2=1

|S1|∑

s1=1

|S2|∑

s2=1

ε∗
t2w

t2
k2

x∗
s1

bk2
s1s2

y∗
s2

−
|U2|∑

u2=0

|S2|∑

s2=1

β∗
u2

e2
u2s2

y∗
s2

= 0,

and (x∗, y∗,α∗,β∗, δ∗, ε∗) satisfies the condition (27a)–(27j) of Theorem 2. Therefore,
(x∗, y∗) is a nondominated equilibrium solution. ��

By specifying the generators of the polar cones of the domination cone as V 1 = {v1 =
(1, 0, . . . , 0)T , v2 = (0, 1, 0, . . . , 0)T , . . . , vr1 = (0, . . . , 0, 1)T } and W 2 = {w1 =
(1, 0, . . . , 0)T , w2 = (0, 1, 0, . . . , 0)T , . . . , wr2 = (0, . . . , 0, 1)T }, for the strictly posi-
tive multiplier vectors δ > 0 and ε > 0, any nondominated equilibrium solution with respect
to the domination cones is also a Pareto equilibrium solution, and then we obtain the following
corollary.

Corollary 2 For a multiobjective two-person nonzero-sum game in extensive form, (x∗, y∗)
is a Pareto equilibrium solution if and only if (x∗, y∗,α∗,β∗, δ∗, ε∗) is an optimal solution
to the following mathematical programming problem.

maximize
r1∑

k1=1

|S1|∑

s1=1

|S2|∑

s2=1

δk1 xs1 ak1
s1s2

ys2 +
r2∑

k2=1

|S1|∑

s1=1

|S2|∑

s2=1

εk2 xs1 bk2
s1s2

ys2

−
|U1|∑

u1=0

|S1|∑

s1=1

αu1 e1
u1s1

xs1 −
|U2|∑

u2=0

|S2|∑

s2=1

βu2 e2
u2s2

ys2 (33a)

subject to
r1∑

k1=1

|S2|∑

s2=1

δk1 ak1
s1s2

ys2 −
|U1|∑

u1=0

αu1 e1
u1s1

≤ 0, s1 = 1, . . . , |S1| (33b)
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r2∑

k2=1

|S1|∑

s1=1

εk2 xs1 bk2
s1s2

−
|U2|∑

u2=0

βu2 e2
u2s2

≤ 0, s2 = 1, . . . , |S2| (33c)

|S1|∑

s1=1

e1
u1s1

xs1 − e1
u1

= 0, u1 = 0, . . . , |U1| (33d)

|S2|∑

s2=1

e2
u2s2

ys2 − e2
s2

= 0, u2 = 0, . . . , |U2| (33e)

x � 0 (33f)

y � 0 (33g)

δ > 0 (33h)

ε > 0. (33i)

3. A numerical example

We consider a multiobjective two-person nonzero-sum game in extensive form shown in
Fig. 1. Both players have two objectives. In this game, a probability distribution of the chance
move is given by p = (p1, p2) = (0.6, 0.4). First, player 1 who knows a choice of chance
player selects her choice, and then player 2 who does not know the choice of chance player
but knows the choice of player 1 determines his choice. Next, player 1 who remembers her
action at the previous node but does not know the choice of player 2 selects her choice again.

There are 13 sequences of player 1 and 5 sequences of player 2, and realization plans of
players 1 and 2 are represented by

x = (x(∅), x(r1), x(l1), x(r2), x(l2), x(r1r3), x(r1l3), x(l1r4), x(l1l4), x(r2r5),

x(r2l5), x(l2r6), x(l2l6))
T ,

y = (y(∅), y(c1), y(d1), y(c2), y(d2))
T ,

respectively.
The constraint matrix E1 of player 1 is given by

E1 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0 0
−1 1 1 0 0 0 0 0 0 0 0 0 0
−1 0 0 1 1 0 0 0 0 0 0 0 0
0 −1 0 0 0 1 1 0 0 0 0 0 0
0 0 −1 0 0 0 0 1 1 0 0 0 0
0 0 0 −1 0 0 0 0 0 1 1 0 0
0 0 0 0 −1 0 0 0 0 0 0 1 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and the constraint matrix E2 of player 2 is also given by

E2 =
⎡

⎣
1 0 0 0 0

−1 1 1 0 0
−1 0 0 1 1

⎤

⎦ .
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Because the probabilities of chance move are p1 = 0.6 and p2 = 0.4, the vector valued
payoff matrix A of player 1 can be computed as follows.

A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(0, 0) (0, 0) (0, 0) (0, 0) (0, 0)

(0, 0) (0, 0) (0, 0) (0, 0) (0, 0)

(0, 0) (0, 0) (0, 0) (0, 0) (0, 0)

(0, 0) (0, 0) (0, 0) (0, 0) (0, 0)

(0, 0) (0, 0) (0, 0) (0, 0) (0, 0)

(0, 0)
( 3

5 , 3
5

) (− 3
5 ,− 6

5

)
(0, 0) (0, 0)

(0, 0) (0, 0)
( 3

5 , 3
5

)
(0, 0) (0, 0)

(0, 0) (0, 0) (0, 0)
( 6

5 , 3
5

) ( 6
5 , 6

5

)

(0, 0) (0, 0) (0, 0)
(− 3

5 ,− 6
5

) ( 6
5 , 9

5

)

(0, 0) (0, 0)
( 4

5 , 6
5

)
(0, 0) (0, 0)

(0, 0)
(− 2

5 ,− 4
5

)
(0, 0) (0, 0) (0, 0)

(0, 0) (0, 0) (0, 0) (0, 0)
( 2

5 , 4
5

)

(0, 0) (0, 0) (0, 0)
(− 4

5 ,− 4
5

) ( 2
5 , 2

5

)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (34)

The vector valued payoff matrix B of player 2 can be also computed as follows.

B =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(0, 0) (0, 0) (0, 0) (0, 0) (0, 0)

(0, 0) (0, 0) (0, 0) (0, 0) (0, 0)

(0, 0) (0, 0) (0, 0) (0, 0) (0, 0)

(0, 0) (0, 0) (0, 0) (0, 0) (0, 0)

(0, 0) (0, 0) (0, 0) (0, 0) (0, 0)

(0, 0)
( 3

5 ,− 3
5

) (− 3
5 , 3

5

)
(0, 0) (0, 0)

(0, 0)
( 3

5 ,− 3
5

)
(0, 0) (0, 0) (0, 0)

(0, 0) (0, 0) (0, 0) (0, 0)
(− 6

5 ,− 12
5

)

(0, 0) (0, 0) (0, 0) (0, 0)
( 6

5 , 12
5

)

(0, 0)
( 4

5 , 4
5

) (− 4
5 ,− 4

5

)
(0, 0) (0, 0)

(0, 0)
( 2

5 , 2
5

) ( 2
5 ,− 6

5

)
(0, 0) (0, 0)

(0, 0) (0, 0) (0, 0)
( 2

5 , 4
5

)
(0, 0)

(0, 0) (0, 0) (0, 0)
(− 2

5 , 2
5

)
(0, 0)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (35)

Let V̂ 1P = {v̂1P = (0,−1)T , v̂2P = (−1, 0)T } and Ŵ 1P = {ŵ1P = (0,−1)T , ŵ2P =
(−1, 0)T } be generators of the domination cones �1P and �2P of players 1 and 2,
respectively, and the corresponding polar cones are represented by

�1P =
{
ω1 ∈ R

2 | ω1 = δ1v1P + δ2v2P , δ = (δ1, δ2) ≥ 0
}

,

�2P =
{
ω2 ∈ R

2 | ω2 = ε1w1P + ε2w2P , ε = (ε1, ε2) ≥ 0
}

,

where v1P = (1, 0)T , v2P = (0, 1)T , w1P = (1, 0)T , and w2P = (0, 1)T . Then, any non-
dominated equilibrium solution of the game is also a Pareto equilibrium solution, and from
Corollary 2, we can formulate the mathematical programming problem yielding Pareto equi-
librium solutions. The problem, which is a quadratic programming problem, has 32 variables
and 50 constraints.

We develop a software based on the successive quadratic programming method for solving
problems (30) and (33). By using the software, we repeatedly solve the formulated problem
and obtain the following set X P = X P

1 ∪ X P
2 ∪ X P

3 of Pareto equilibrium solutions:
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X P
1 =

{((
1, 0, 1, 0, 1, 0, 0,

1

3
,

2

3
, 0, 0, 1, 0

)T

,

(
1, 1 − a, a,

1

4
,

3

4

)T
) ∣∣∣ 0 � a �

1

2

}
,

X P
2 =

{(
(1, 0, 1, b, 1 − b, 0, 0, 1, 0, b, 0, 1 − b, 0)T , (1, 1, 0, 1, 0)T

) ∣∣ 0 � b � 1
}

,

X P
3 =

{(
(1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, c, 1 − c)T , (1, 1 − d, d, 1, 0)T

) ∣∣∣∣ 0 � c � 1,

0 � d �
2

3

}
.

To obtain the result, we take not more than one minute in a PC with Pentium 4, 3 GHz. In
Fig. 2, we depict feasible areas of expected payoffs and areas painted black which corresponds
to the Pareto equilibrium solutions in a payoff space of players 1 and 2.

Next, we slightly change domination cones compared with the previous example. Let
V̂ 1N = {v̂1N = (−1, 1)T , v̂2N = (1,−2)T } and Ŵ 1N = {ŵ1N = (−1, 1)T , ŵ2N =
(1,−2)T } be generators of the domination cones �1N and �2N of players 1 and 2,
respectively, and the corresponding polar cones are represented by

�1N =
{
ω1 ∈ R

2 | ω1 = δ1v1N + δ2v2N , δ1, δ2 � 0
}

,

�2N =
{
ω2 ∈ R

2 | ω2 = ε1w1N + ε2w2N , ε1, ε2 � 0
}

,

where v1N = (1, 1)T , v2N = (2, 1)T , w1N = (1, 1)T , and w2N = (2, 1)T .
From Theorem 3, we formulate a similar mathematical programming problem yielding

nondominated equilibrium solutions, and obtain the following set X N = X N
1 ∪ X N

2 ∪ X N
3 of

nondominated equilibrium solutions:

X N
1 =

{((
1, 0, 1, 0, 1, 0, 0,

1

3
,

2

3
, 0, 0, 1, 0

)T

,

(
1, 1 − a, a,

1

4
,

3

4

)T
) ∣∣∣∣ 0 � a �

9

20

}
,

X N
2 = X P

2 ,

X N
3 =

{(
(1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0)T , (1, 1 − b, b, 1, 0)T

) ∣∣∣∣ 0 � b �
3

5

}
.

Compared with the set of Pareto equilibrium solutions, we can understand that, from
X N

1 ⊂ X P
1 and X N

3 ⊂ X P
3 , X N ⊂ X P .

In Fig. 3, we also depict feasible areas of expected payoffs and areas corresponding to the
nondominated equilibrium solutions in the payoff space of players 1 and 2.

Comparing Figs. 2 and 3, we can confirm the inclusion relation between the set of Pareto
equilibrium solutions and that of nondominated equilibrium solutions in the payoff space.

4. Conclusions

In this paper, in a multiobjective two-person nonzero-sum game in extensive form, we have
defined nondominated equilibrium solutions based on domination cones and have given a
necessary and sufficient condition for a pair of realization plans to be a nondominated equilib-
rium solution by applying the Tamura and Miura condition for multiobjective mathematical
programming problems. Using the necessary and sufficient condition, we have formulated a
mathematical programming problem whose optimal solutions correspond to nondominated

123



218 J Glob Optim (2008) 42:201–220

−2.8

3

−1.8 20

objective 1
2 evitcejbo

−3.6

3.2

−2 20

objective 1

2 evitcejbo

a

b

Fig. 2 Feasible areas of expected payoffs and payoff areas corresponding to the Pareto equilibrium solutions

equilibrium solutions of the game, and have also given a mathematical programming prob-
lem for Pareto equilibrium solutions. Furthermore, we have given a numerical example and
have demonstrated that nondominated equilibrium solutions can be obtained by solving the
formulated mathematical programming problem.
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Fig. 3 Feasible areas of expected payoffs and payoff areas corresponding to the nondominated equilibrium
solutions
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